ON THE ONSET OF DETONATION IN A NONUNIFORMLY
HEATED GAS
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Investigation of detonation waves in gases is usually carried out by means of shock tubes in which
detonation is initiated either by a shock wave or an accelerating flame with the initial temperature of the
combustible mixture close to ambient. The actual generation of a detonation wave in such tests is readily
ascertained by the rapid change of pressure or temperature, since detonation increases the chemical
. reaction rate severalfold.

Conditions in an internal combustion engine in the presence of "knock" are different. Owing to
preliminary compression of combustible gas mixed with products of combustion remaining in the cylinder
after the exhaust stroke, the gas temperature can be sufficiently high to create favorable conditions for
an explosion-like chemical reaction throughout the cylinder volume. I the temperature and the mixture
are uniform throughout the cylinder volume, the chemical reaction will result in a uniform pressure rise
there. If, on the other hand, the temperature of the combustible mixture varies from point to point, the
chemical reaction at these proceeds differently, and this leads to an uneven expansion of gas and a possible
initiation of shock and detonation waves. Unlike conventional detonation experiments in shock tubes, the
exact determination of the point of transition of the chemical reaction from a uniform explosion-like mode
to that of a spreading detonation wave is a difficult experimental task necessitating precision measurements,

A theoretical study of this problem is presented here. The problem of detonation onset in a non-
uniformly heated gas susceptible to chemical reaction is solved. Three reaction modes are shown to be
possible. If the temperature distribution at the initial instant of time is such that the gas is nearly uni-
formly heated, the reaction mode is that of a thermal explosion. With a steep temperature distribution, a
detonation wave detached from the reaction wave is generated. Finally, there is a temperature distribution
such that the generated detonation wave becomes capable of initiating a reaction, and a stationary detonation
mode sets in,

1. Statement of Problem, ILet at the initial instant of time the temperature profile of a reactive gas
in the half-space X > 0 be given in the form of the linear function

TO X)="Ty —nX (1.1)

It is also assumed that the gas pressure P and the relative concentration @ of the combustible con~
stituent [fuel] are constant and that the gas is at rest, i.e.,

P (0, X) = P,, U@ X)=0, @ X)=1 (1.2)
where U(t, X) is the velocity of gas.

To satisfy the condition T(t, X) = 0 (for 0 =< t < =), we assume that T(0, X) =0 for X > Ty/n. If we
confine ourselves to the initial stage of perturbation onset (that this is sufficient will be shown in the fol-
lowing), the later condition will not be restrictive owing to the finiteness of the propagation velocity of
these.

The gas is assumed to be perfect, i.e., its equation of state is of the form

PV = RT (1.3)
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Here R is the gas constant and V is the specific volume of gas.

The statement of the problem implies a stationary initial state of the perfect inert gas, i.e., that the
initial state of the latter is changed ouly by the incipient chemical reaction which must set the gas in the
vessel into motion, Since at the hot wall the reaction develops with greater intensity, a rapid expansion of
gas takes place there, and the onset of a shock wave becomes possible. Under certain conditions, this
wave may develop into a detonation wave.

Various chemical reaction modes are possible, depending on the specified initial temperature gradieat.

For counsiderable u, the reaction induction time also decreases, and layers of gas further removed
from the hot wall begin to play an increasingly important role in the formation of the shock wave. The lat-
ter becomes sufficient for initiating a reaction in the gas, which will then proceed in a detonation mode.

For small n (nearly uniformly heated gas), the reaction develops throughout the whole vessel with-
out shocks,

2. Equations and Boundary Conditions. We use one-dimensional equations of gasdynamics for analy-
zing the motion of gas and take into cousideration the energy released by the chemical reaction (for sim-
plicity, the latter is considered to be of the first order with respect to a):

7] U 1 au ;U 1 8P
at X <p“7>’ a TV s = ez

‘ (2.1)
1% da
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Here Q is the heat energy release, E is the activation energy, k is the preexponential factor, and v
is the adiabatic expouneunt.

It is convenient to pass in the subsequent analysis to the Lagrangian coordinate x and dimensiounless
variables defined by the following equations:

szOpv T:Toe, U':]/-']"RTOU,7 V-——_ _}ﬂ_v
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Po VYRT, o E \ dx
kT, P RT, T\ Vix)
o
_: VART
X =t expop
The equations of motion (2.1) then become
10 au / 1 P E
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E
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Initial conditions (1.1) and (1.2) and the equation of state {1.3) after transformation take the form

B0, z) =¢ (800, E) =1—2F), v(0, 2)=06(0, 2
EQ, =M1 —e), pO, 2)=1, a0, 2 =1, u(0, z)=0, (24)
pr =0
Note that a symmetric extension of function T(0, X) into region X < 0, reduces this problem to that
of Cauchy.

3. Progamming Calculations for the Computer. Numerical integration of system (2.3) with initial
conditions (2.4) makes it necessary to cousider the problem on a finite segment of the x axis. To comply
with this we introduce a wall at x = 1., The boundary conditions (couditions of impermeability of walls) are
then written

u(T O =ur, =0
1
20— - In{1— ;\’;’(0)), z,;(O) —

exp(_ﬁ@"ﬂ) (3.1)

The boundary condition at the cold wall, introduced for bounding the region of integration, does unot
affect the course of the reaction, since we are interested in times shorter than that required for the snock

wave to reach the right-hand boundary.

-VTH T

Since the appearance of shocks is to be expected, we introduce into the solution of the problem an
artificial viscosity, as was done by Neuman and Richtmayer [1]. This permits the substitution of a thin
transition layer for the shock in which the parameters, although rapidly changing, are free of discontinuities.
The introduction of artificial viscosity makes it possible to avoid involved calculation of shock by the
Hugoniot equation. The artificial viscosity is defined by the following equation:

Az)? [ Ou\2 ou du
q:”r(‘Lg)“<j9%> for 75 <0 1=0 for 5z >0 (3.2)
where Ax is the increment along the space coordinate and v is
the coefficient of artificial viscosity.

The first two equations of (2.3) are now replaced by

25 "/ .
x J/\Z P ‘ 1 90 du 1
055 \C — ; = T a7 TP+ 95y =naexp [B <1 ———e—ﬂ (3.3)
) a
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Fig. 2d
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Using the difference method of the "tripod" type [2], we readily obtain for the solution of our problem
the following explicit algorithm:

(AT)n

1 n
with = u — R (Pt G ™ Pl G

Bl g (A}t of s (A @ — )

7 A
7

1
G = 4 (14 (3 O 1 (69 = exp [ B(1- 5—)}

wa 00707 4 @hpf o) @ — o) o o — (3.4)
k= Yo (01 + 1) (r— ) — o]
e';H—l — p;l+1v;:l+1

- 2yv?
no_ n n 2 n noo. o U n
9 = = Wi for  Uiep <] Wy 15 =0 for Uy, > Uy,
j

0/ <J (=2, 0<n<oo

Here ¢;" denotes the value of function ¢ at the instant of time (AT); + (AT)y + ... + (AT), at point jAx;
the time-increment (Ar)y is chosen on the basis of Courant's stability condition

Az VY72

max; ) 0," /2 (3.5)

which controls the accumulation of small errors in the calculation.

(Ar)p=

The boundary and initial values of parameters are calculated by the following equations:
a) boundary conditions
“gzﬂ — EQ“ - u}tﬂ — 93“ — q}-f-l =0, an — E(O)
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b) initial conditions

10— ——
Fa . 8;° = exp (— AjAz), E;0 == A~1[1 — exp (— AjAz)]
pP=ap=1, uf=0, »9=@0 (3.7)

/ 4 4. Discussions. The following values of dimen~-
/A 2

¥ 7 sionless parameters were used in calculations: v = 1.7,
0.4 ' J=350,a=5,8 =10,y =1.2,¢ =55,

In the following, the results are given in physical
variables for k - 10' gec=?, Ty = 2000°K, and L = 10 cm.

. 2 ; We also choose A= 0.66 (v, = 7360 deg/cm), A, =
- 0.02 (my = 220), A3 = 0.017 (3= 118), A, = 0.01 (n, = 110),
J “ and}\5=0.001 (%5= 11). ‘

g 20 40 0 N The initial temperature distribution for these values
of w are shown in physical variables in Fig. 1,

20
9 = ' First, let us consider the case of considerable tem-
14 perature gradients (A; = 0.66)., The distribution of para-
KL 2y able meters a, p, §, and u along the coordinate is shown in

101~ l Fig. 2a~-d where curves 1, 2, 3, 4, and 5 relate to in-

SN stants of time 7 = 0.41, 0.82, 1.22, 2.44, and 3.93.

\ £ At T =041 the reaction and the shock waves coin-

cide (Fig. 2a, b). The distance between thé two waves
increases at an increasing rate with time, and the shock
Fig. 6a, b, ¢ wave becomes detached from that of the reaction,

g 1
¢ a0 4 0 7 20 7 60

A pulsating pressure behind the shock wave can be seen in Fig. 2b. Small amplitude pulsations
{ripples) and large scale oscillations, representing acoustic perturbations propagating behind the shock-
wave front, can be distinguished there.

The small pressure oscillations at the wave profile are due to the finite-difference construction of
the algorithm (3.4). The magnitude of these pulsations determines the accuracy which can be reasonably
expected from these calculations, The maximum intensity of the shock wave is p/p; =2.1. After the
separation of the shock wave from that of the reaction, the former becomes attenuated owing to the rare-
faction waves (troughs in the wave profile) overtaking the shock wave.

Initial temperature distribution is shown in Fig, 2¢ by a dashed line. It is seen that the increase of
temperature is essentially due to the reaction wave, while the heating of gas by the shock wave is insig-
nificant, hence the slowing dowa of the reaction (Fig. 2a). Had the equations contained terms related to
diffusion and thermal conductivity, a normal flame propagation would have resulted. Note that the shock
wave velocity is somewhat higher than the normal rate of flame propagation; hence, the absence of these
terms does not affect the formation and propagation of the shock wave.

Variation of the gas velocity relative to the walls with time is shown in Fig. 2d.

The same reaction mode is obtained for A, = 0.02. The behavior of parameters a and p are showu in
Fig. 3, where curves 1, 2, 3, and 4 relate to times 7 = 744, 1149, 16.65, and 22.15.

The difference between this and the previous case is that [here] the shock wave becomes detached
from the reaction wave much later and at considerably greater distances from the hot wall (even at 7 = 7.44
and £ = 23.0 the two are still together), owing to the greater mass of combustion products taking part in
generating the shock wave. This also explains the considerably higher intensity of the shock wave — in this
case equal to 6.6 — than in the previously considered case.

The course of the reaction in a detounation mode is shown in Fig. 4a, b. In this case A3~ 0.0107 is that
critical gradient 7\;'( at which detonation occurs. The results of solution are presented in the form of curves
1, 2, 3, 4, 5, and 6 which relate, respectively, to times 7= 5.73, 7.84, 9.53, 11.23, 12.96, and 14.76. The
wave velocity can be calculated from the data of Fig. 4; for the above time intervals, it is 15.07, 5.57, 5.80,
5.29, 4.88, and 4.53, respectively (these velocities are normalized with respect to the speed of sound at
300° K).
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On the other hand, from the equationfor a strong detonation wave [3];
D=V2rr—1)Q @.1)

where D is the detonation wave velocity, we find that D =4.95.

10 ;

25

At the instant of time 7 = 14.76 the detonation wave mode appareutly
Z ' ? — changes to that of the Chapman—Jouguet. This is confirmed by the cal-
culation of the detonation wave velocity with respect to the products of com-
p I bustion,which is equal to the local speed of sound. These calculations were
a W 5 made for points denoted in Fig. 4b by asterisks, The parameter (D —w)/c,
Fig. 7 where w is the velocity of products of combustion at a given point and ¢ is
the speed of sound at the same point, is equal to 0.97, 1.06, 0.98, and 0.53
(in order of increasing £). The last of these relates to the point at which the reaction has not yet begun.
Deviations of these values from unity are within the limits of accuracy of determination of the shock wave
velocity.

The discrepancy between the values of wave velocity obtained by numerical calculation and derived
from Eq. (4.1) can be explained by the instability of the detonation wave. This was noted in [4~6] in which
the instability of one-dimensional propagation of detonation waves was investigated. Pressure pulsations
observed in [5, 6] were alsc noted by us (results of these investigations are not presented here). We
would only note that, unlike in the case considered here, the detonation wave velocity and the supercom-
pressionratioin [5, 6] were determined by external conditions — the motion of a piston,

It should be recalled that the propagation of the wave itself is to a certain extent arbitrary, owing to
its instability with respect to spatial perturbations. The experimeuntally observed detonation waves have a
complex three~dimensional nonstationary structure. Hence, ouly the first stage of detonation wave forma-
tion can be illustrated prior to its acquiring a spatial structure.

Let us compare these results with the propagation of a reaction in an incompressible gas. Setting in
Eqgs. (2.3) 8u/8x = 0, we readily obtain

o i {A E as} — Ei [A B_GJ + eﬁ/A{Ei [A (A?’i - }_ o [A (ABffm)J}

ef dz

7 x>0>

(4.2)

<cs:<x(\'——1), A=1-406—AL, Ei[z]= S

defining the time-dependence of concentration a.

The results of calculation by Eq. (4.2) are shown in Fig. 5, where curves 1, 2, 3, and 4 relate to in~
stants of time 7 = 0.27, 0.42, 1.34, and 6.75 (33 = 0.0107).

The pattern of detonation wave formation can be observed in Figs. 6a-c (A, = 0.01), where curves 1,
2, 3, and 4 relate to instants of time 7 = 1,55, 3,10, 7.75, and 10.75. At the beginning the variation of all
parameters is fairly smooth, then with the progress of wave formation the gradients become more and
more steep. Here the wave is formed later than in the previous case.

If the slope of the temperature profile is further decreased, then, from A,* = 0,003 onwards, the
reaction takes place throughout the whole vessel, i.e., in the mode of a thermal explosion.

We would point out that the critical gradients A * and A,* are functions of the length of the vessel.
When this length is shorter than the distance at which traunsition to the Chapman—Jouguet mode occurs,
the mode of the chemical reaction can be classified as a thermal explosion.

Solutions for Ay = 0,001 are shown in Fig. 7, where curves 1 and 2 relate to instants of time v = 0.18
and 0.34. The complete burnup of the combustible constituent is achieved at the instant of time 7 = 0.47.
Pressure in the vessel rises nearly uniformly to 2P,. This is readily derived from the system of Egs.
(2.1) by equating to zero the derivatives with respect to x.

5. Knock in Internal Combustion Engines. The explosion-like combustion occuring in internal com-
bustion engines is referred to as knock. It is usual at present to explain this phenomenon in terms of
kinetic concepts. Conclusions reached by various authors are to a great extent contradictory and do not
adequately explain the accumulated experimental data. A detailed survey of current views on this subject
was made in the monographs|[7, 8]. The receat paper [9] should also be noted.
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The explanation of this phenomenon on purely thermal grounds, as proposed in this paper, is based

on the assumption that a detonation wave can be generated by the uneven heat distribution in the reactive

gas mixture. The reason for the considerable thermal and mechanical overloading of an engine working

under knocking conditions is explained by the presence of detonation waves. For example, in the case of
As = 0.0107, the detonation wave intensity is ~ 6. According to the formula for detonation wave reflection
from a solid wall [10], the pressure behind such a wave is ~ 15 Py,

Occurrence of detonation waves under knock conditions had been experimeuntally observed, and is

described in [8].

The authors wish to express their deep gratitude to L. A. Chudov for his considerable help in

solving this problem.
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